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Summary - An approximate theory of mid-term selection for a quantitative trait is

developed for the case when a finite number of unlinked loci contribute to phenotypes.
Assuming Gaussian distributions of phenotypic and genetic effects, the analysis shows that
the dynamics of the response to selection is defined by one single additional parameter,
the effective number Le of quantitative trait loci (QTL). This number is expected to
be rather small (3-20) if QTLs have variable contributions to the genetic variance. As
is confirmed by simulation, the change with time of the genetic variance and of the
cumulative response to selection depend on this effective number of QTLs rather than
on the total number of contributing loci. The model extends the analysis of Bulmer, and
shows that an equilibrium structure arises after a few generations in which some amount
of genetic variability is hidden by gametic disequilibria. The additive genetic variance V,q
and the genic variance Va remain linked by: VA = % - /t(l &mdash; 1/Le)h2VA, where K is

the proportion of variance removed by selection, and h2 the current heritability of the
trait. From this property, a complete approximate theory of selection can be developed,
and modifications of correlations between relatives can be proposed. However, the model
generally overestimates the cumulative response to selection except in early generations,
which defines the time scale for which the present theory is of potential practical value.
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Résumé - Théorie approchée de la sélection pour un caractère dû à un nombre
fini de locus. Une théorie approchée de la sélection est développée dans le cas d’un
caractère quantitatif dont la variabilité génétique est due à un nombre fini de locus

génétiquement indépendants. Le calcul est développé analytiquement en admettant que
toutes les distributions statistiques peuvent être approchées par des lois normales. L’analyse
montre que le comportement global du système génétique dépend essentiellement d’un
«nombre e,/!j&dquo;ccace de locus», Le, dont les valeurs vraisemblables sont sans doute faibles



(! à 20). Des simulations confirment le rôle de ce paramètre pour caractériser la réponse
cumulée à la sélection et la structure génétique de la population. Le modèle généralise
l’analyse de M Bulmer. Après quelques générations d’un régime de sélection, une fraction
de la variance génétique reste « cachée» sous la forme de covariances négatives, de sorte que
la variance génétique additive VA et la variance génique Va demeurent liées par la relation :
VA - Va - ¡.¡,(1 - I/L,)h2VA, où est la fraction de variance réduite par la sélection, et

h2 est l’héritabilité actuelle du caractère. Cette structuration de la variance génétique sous
sélection permet de proposer des expressions modifiées des covariances entre apparentes
issus de parents sélectionnés, et de développer une théorie complète de la sélection. Sauf à
court et moyen terme, les prédictions quantitatives sont surestimées par le modèle gaussien,
ce qui délimite le champ d’application pratique de la théorie.

génétique quantitative / sélection / variance génétique

INTRODUCTION

Models of quantitative genetics are generally developed under the assumptions
of the infinitesimal model, which states that a very large number of genetically
unlinked loci contribute to the genetic variance of a trait. More precisely, it is
assumed that all contributions of individual loci are of the same order of magnitude.
This hypothesis ensures that the distribution of breeding values is Gaussian, and
validates the whole statistical apparatus that made the statistical developments of
applied quantitative genetics possible and its practical achievements. The scope of
the present paper is to develop an approximate theory that may cope with more
general genetic situations, owing to the introduction of an additional parameter
characterizing a quantitative trait. The cases considered in the following involve
variable contributions to the quantitative trait of a finite number of genetically
unlinked loci. The derivations rely on the hypothesis that all distributions can be
approximated by a Gaussian, following the method illustrated by Lande (1976) and
Chevalet (1988). This makes it possible to define an analytical theory of selection
with a model that seems less unrealistic than the usual infinitesimal hypothesis
involving very many unlinked quantitative loci.
Two main qualitative predictions are derived from the Gaussian model: (i) a

single parameter, which can be called the effective number of quantitative trait
loci (QTL), is a good summary of the distribution of the variable contributions
of QTLs to the genetic variance of the trait; and (ii) under continued selection
the amount of genetic variability that is hidden by negative correlations between
contributions of different loci can be calculated as a function of selection intensity,
the current additive genetic variance, and the effective number of QTLs. In addition
to analytical derivations, simulations were performed in order to evaluate the

qualitative and quantitative importance of departures from normality.



GENETIC MODEL

We consider a diploid monoecious population of N reproducing individuals per
generation, with L loci. Let

be the genotypes of a male and a female gamete, respectively. The numbers g(-)
and g(f) are defined as absolute effects of the genes carried by the corresponding
loci e. These effects are distributed in the population, and their joint distribution is
assumed to be multivariate normal. Assuming symmetry between male and female
contributions, any value is written in the following way:

where g is the mean value of a gamete and y a residual.
Matings are assumed to be random, so that the variance covariance matrix of

gene effects in new zygotes takes the form

where G = Cov(g(-),9(-),) = Cov(g(f),9(f)’) is the variance covariance matrix
between gene effects of a gamete drawn from the reproducing individuals in the
preceding generation.

The value of phenotype P in a zygote with (g(m), g(f)) genotypic value is assumed
to depend linearly on gene effects:

where B is a (L x 1) vector. Note that considering several vectors B allows several
traits to be considered simultaneously.

The genotypic distribution among the zygotes is given by equation !1!, so that
the first 2 moments of a trait P are:

where (2B’GB) is the additive genetic variance VA of the trait, and VE is the
variance of environmental effects on the trait. Similarly, the genetic covariance
between P and a second trait Q characterized by a vector C, is: Cov(P, Q) =
2C’GB.



Under the Gaussian approximation, the genetic modifications induced by selec-
tion on the phenotype are calculated from the regression equations, and depend
only on the first 2 moments of the phenotypic changes. Thus, the exact selection
rule is not important. For example, truncation selection and stabilizing selection
with a Gaussian fitness function yield the same predictions provided they are char-
acterized by the same changes in the mean and variance of phenotypes. The relevant
parameters are defined as follows, where subscript s refers to values after selection:
- the selection intensity i, relating the change in mean phenotypic value to the
phenotypic standard deviation

- the relative change in the variance K

Assuming that selection occurs among a large population of zygotes, the values of
covariances between gene effects in the selected individuals is:

where Ke is defined as

Then, taking account of gametogenesis, and rej being the recombination fraction
between loci and j, recurrence relationships between 2 successive generations (t)
and (t + 1) can be derived for the mean and the variance covariance matrix of gene
effects (Lande, 1976; Chevalet, 1988):
- mean effects g’s:

- within population structure:

- variance of the mean values (drift effect):



SIMULATION MODEL

The simulated model shares the same general hypotheses as the analytical scheme
(same initial value of heritability, same distribution of the contributions of loci to
the genetic variance), but is a completely discrete genetic model.

At each locus, a finite number of alleles are assigned additive effects that sum up
to the breeding value of a zygote,’ to which a Gaussian random variable is added to
simulate the environmental effect. The additive effects of alleles are drawn in the
initial generation from a Gaussian distribution, and adjusted to yield the specified
heritability and distribution of contributions among loci. The population size is
described by 2 numbers: the number of zygotes; and the number N of selected
adults. Truncation selection on individual phenotypic values is performed, and
adults are mated at random (with selfing occurring with a probability of 1/N).
The genetic make-up of gametes produced by the parents are generated using a
pseudo-random-number generator to simulate Mendelian segregations.

Programs allow for various initial distributions of allelic effects within and across
loci, several selection rules (truncation selection is used here), and various linkage
relationships between loci (fixed at 1/2 in the present work). Outputs from the
program include, at each generation, the mean values and standard deviations over
replicated runs of the following criteria: mean breeding value; genetic and genic
variances, effective numbers of loci (equations [17] and [18] below) and of alleles
per locus; mean homozygosity; proportion of fixed loci; and (for models assuming
independent loci) the T parameter defined in the following (equation !21!). One-
hundred runs were performed for each considered case. Programs were written in
Fortran 77 and were run on a UNIX machine.

ANALYTICAL DERIVATIONS

The effective number of QTLs

With equal contributions of unlinked loci, equation [9] leads to only 2 equations
describing the change with time of 2 macroscopic statistics, the additive genetic
variance V,q , and the genic variance Va (ie the sum of the variances contributed by
the loci). Removing time indices (the asterisk denoting the next generation), the
equations are (Chevalet, 1988):

where h2 is the current value of heritability, h2 = yA . The genic variance Va
Var(P)

can be written as:



D being the sum of the contributions to VA of the covariances between gene effects
at different loci.

In the case of unlinked loci, equation [9] has 2 types, for diagonal terms (rtj = 0)
and for non-diagonal terms (rtj = -). 2 I Multiplying equation [9] by Be and summing
over yields: 

-

thus:

Multiplying equation [13] by B! and summing yields equation (11!, as in the case
of uniform contributions. In contrast, summing the diagonal products B! G!! in
equation [9] gives:

Introducing deviations Xj (resp Yj) of the contributions BjKj (resp GjjB?) of
I 1

locus j from the mean contribution &mdash;V/t (resp - Va) of a locus2L 2L



Equation [14] becomes

which can be written in a form similar to equation (12!:

defining the effective number Le of quantitative trait loci as:

this can also be written in the following forms:

where CV is defined as the coefficient of variation of the contributions of the various
loci to the total additive genetic variance

&dquo;:_f

In addition to the 2 main equations [11] and [14], the following equations for the
deviations Xj and 1j can be derived:

It can seen that these deviations would remain null if they are so at some time.
However, it would be interesting to check if this null state is stable with respect



to perturbations. Together with equations (12!, [15] and (16!, these equations form
a closed set of 2L independent equations which can be extracted from the set of
L(L + 1)/2 (equation (9!). This exact result, which exhibits a hierarchical structure
within the system (9J, is completed by the approximate result that only 2 equations
are needed to get a comprehensive description of the dynamics of the system. In
fact, the value of Le, as defined above, depends on time unless initial conditions are
such that Le = L. Various numerical calculations comparing the change with time
of VA, either from full equations [9] or from simple equations [11] and (12!, with the
proper initial value of Le, show that for many generations no significant discrepancy
can be found. As far as only macroscopic parameters are of interest (genetic variance
or response to selection on the phenotypic scale), it seems valuable to simplify the
complete system, and reduce its description to both equations [11] and (14!, where
Le is related to the microscopic (unobservable) parameters by equations (16!-(18).

EQUILIBRIUM STRUCTURE UNDER SELECTION (BULMER
EFFECT)

Directional selection for a trait due to the additive effects of several loci develops
negative correlations between the contributions of distinct loci. In the statistical
setting of the infinitesimal model, in which loci are not individually considered,
this effect has been proven by Bulmer (1971) by considering the regression of
the genotypic value on phenotypes after selection. In a very large population, and
assuming initial linkage equilibrium, he derived the following recursion (a special
case of equations [11] and (12!):

He also showed that after a few generations, an equilibrium structure arises, in
which the genic variance Va remains equal to the initial genetic variance viQ) and
the genetic variance is fixed at a reduced value dependent on selection strength.
The limit values are such that

Equation [19] gives the total amount contributed at equilibrium by negative
correlations (ie linkage disequilibria) to the genetic variance.

In the first generation, this result can be shown directly by a genetic analysis,
under the hypothesis of the infinitesimal model, starting from a model involving
multiallelic distributions if the initial population is assumed to be in Hardy-
Weinberg equilibrium at all loci, and in linkage equilibrium for all pairs of loci.
A more general treatment of the problem is proposed by Turelli and Barton (1990),



based on the calculations of all the moments of distributions. However, unless
special hypotheses are stated, their approach does not provide explicit recurrence
relationships after the first generation.

In the present model, the genetic variance decreases to zero as soon as L is
finite when selection is active (K is positive), and if N is finite selection accelerates
the fixation process (Chevalet, 1988). However, a qualitative property similar to
Bulmer’s result still holds: under continuous selection (constant selection strength),
the following approximate relationship holds at any generation t after 4 or 5

generations under the same selection rules:

This shows that, while genetic variances decrease to zero, the total contribution
of negative correlations remains proportional to the square of the available genetic
variance.

The result is obtained by introducing (for K 54 0) a new variable T(t):

and rewriting equations [11] and [15], with the 2 variables Va and T. Writing
equation [21] as:

the recursion in T is obtained as follows (discarding time indices as before):

The numerator can be written as:

In the denominator, VI is written as



thus:

The recursion in (Va,T) can then be derived using function F (equation !22!) and
assuming either that the phenotypic variance is constant (Var(P) = Vp), or that
the environmental variance (VE) is constant. In the latter case Var(P) and Var*(P)
are written as F(Va, T) + VE and VI + VE using expressions [22] and [23!.

In the case of constant phenotypic variance Vp, we obtain the system:

Written in this way, it can be seen that Va is a slowly varying expression, for N
and Le not too small, while T reaches the neighborhood of a limit T in a few
generations:

This yields equation [20] above. In fact, as is done in Appendix, we can show
analytically that T reaches the neighborhood of 1 within 4 to 5 generations; after
this first step, the convergence to T may be rather slow and depends on the relative
values of K, Le and N (numerical calculations). The same occurs for both models
of phenotypic variance (constant phenotypic or environmental variances), with the
same limit T and the same kind of convergence.

An approximate complete solution

The analysis of the model can be further developed, owing to the reduction to
2 equations, and even to a single equation. Indeed, since T reaches its limit in a few
generations, replacing T!t! by T in equation [21] or [22] allows vit) to be written
as an algebraic function of vY).

Equation [15] becomes:



If N and Le are not too small, and their ratio is finite, this difference equation
can be transformed into a differential equation. Assuming a constant phenotypic
variance (Var!t!(P) = VP), we obtain a scaled time

and the following notations:

and then, substituting F by its definition, equation [28] is approximated by

Integration gives the (scaled) time u2 - ui corresponding to a reduction in the genic
variance, from Va(t’) to U!t2!. The result is easily obtained by changing the variable
Va to W = F(Va,T) (W is used here instead of VA to avoid confusion between
the true value of genetic variance and its approximation). The differential equation
becomes

and the solution is

which gives W2 as an implicit function of Wl and of (u2 - Ul). Using this

approximation, an equation for the cumulated response to selection can be derived.
The cumulative response from time t, to time t2 is

Changing VA to its approximation W, and replacing the sum by an integral, we
can write:



where

This integral can be readily calculated by rewriting equation [33] as

so that, taking account of equation !34!, 1(ul,u2) is

The set of equations [34]-[36] provides an explicit solution to the problem, which
can be completed by a further equation giving, from equations (10!, the variance of
the response due to sampling. Comparing the numerical results obtained with this
continuous approximation with that derived from the iterative use of equations (11!
and [15] shows a very good agreement, as far as the comparison does not involve
the first generations if initial conditions assume linkage equilibrium (VA = E). In
the latter case, the continuous approximation underestimates the initial response
to selection. Although it is derived under the hypothesis that N and Le are rather

large, the approximation is still correct for values of Le as small as 5.
A similar analysis can be carried out for the model assuming a constant

environmental variance, rather than a constant phenotypic variance.

DISCUSSION

The preceding calculations show that the dynamics of the multilocus system
considered can be described by introducing a single additional parameter (the
effective number of C!TLs), as compared to the standard statistical setting of
quantitative genetics. The result holds as far as only macroscopic properties of the
system are considered, and for a limited number of generations, because the non-
linear features of the system (equation (9!) do not allow the derivation of a uniform
upper boundary for the deviations of individual locus contributions from their mean
values. This parameter, Le, also allows the structure of genetic variance to be
predicted, according to the generalization of Bulmer’s result to a finite population
and to a finite number of (aTLs (equation (20!).

The number of (!TLs

Recent results of QTL detection, mainly in plants, suggest a rather small number
of loci contributing a significant part to the genetic variance of quantitative traits.
This does not mean that a few genes are involved in the make-up of the trait,
but that only loci contributing a rather large genetic variance can be detected
by segregation analysis. A simple way to describe the distribution of individual



contributions of loci may be to consider them as pertaining to a geometric series of
ratio x (x < .1). Considering the case of an initial generation, in which selection has
not yet developed correlations between loci, the individual contribution of locus i
can be written as:

so that the total genetic variance is

From equation [17] this yields:

giving quite low values that hardly depend on the actual number L. For example,
this equation gives Le about 3 for x = 0.5, Le about 10 for x = 0.8, and Le about
20 for x = 0.9. If an arithmetic series is assumed, the ratio Le/L remains larger.
Writing:

yields

Simulation runs were performed with different actual numbers L of loci sharing
the same value of Le, according to equations [38] and [40] (uniform distribution,
arithmetic, and 2 geometric distributions). They result in parallel evolutions

concerning the genetic variances VA (fig 1), as well as for the genic variance Va
and the cumulative response to selection (not shown).

The validity of this parameter as a predictor of the dynamics of the system de-
pends on it being constant over generations. Numerical calculations do not indicate
any significant departure of Le from its initial value. Simulation results show how

Le, as estimated each generation from the simulated data (from equation [17]),
changes with time (fig 2). Unless the size of the population is quite small and se-
lection intensity is high, it is seen that Le is slowly varying; at least, comparison
with figure 1 indicates that this parameter changes with time more slowly than the
genetic variance. The changes of Le with time occur after a first period while it is
almost constant, in the cases when the initial distribution of contributions of loci to
the genetic variance is either uniform (leading to a decrease of Le) or highly vari-
able (geometric series with ratio x < 0.8) in which case L, increases. Conversely,
slightly variable contributions (arithmetic series, or geometric series with x about







0.9-0.95) lead to quite stable Le values. Changes are more significant as selection
intensity is greater. Moreover, it seems from simulations that this parameter may be
very sensitive to population size, suggesting that a large effective number of (aTL’s
cannot segregate simultaneously in a small population under strong selection.

Thus, the approximate analytical derivations, as well as the simulations, indicate
that L, is a significant parameter. Even if the absolute values obtained for these
quantities do not generally fit theoretical predictions very well, the previous results
indicate that Le, as defined in equation !17!, controls the sensitivity of the genetic
system to the number of QTLs. Moreover, it is a parameter that can be estimated.
Firstly, the present Le definition is the same as that obtained with the classical

design using a cross between inbred lines, and comparing the variance in F2 to the
differences of parental lines (Wright, 1968; Lande, 1981). Secondly, methods based
on segregation analysis of many linked genetic markers will provide data giving
the distribution of the most important G!TLs segregating in populations and their
’contributions to the genetic variance. Even if these results provide new tools for
selecting individuals on a true genetic basis, knowledge of Le remains of interest
for analysing performances in populations, as soon as selection has been practised.

Genetic structure under selection

Equation [20] shows that under continuous selection, a genetic structure arises that
characterizes an internal equilibrium between selection and recombination. In fact,
this relationship holds exactly in the equilibrium state considered by Lande (1976)
in the framework of a model involving selection and mutations, when recombination
fractions are set to 1/2. It can be also seen as a kind of quasi-linkage equilibrium,
a situation encountered in more general models under weak selection (Barton and
Turelli, 1991). In contrast with these exact but asymptotic results, the present result
holds very early in the process of selection (fig 3 and Appendix), then holds during
the whole process. Moreover it does not require a weak selection. It is approximate
but quite accurate, and probably more meaningful in the context of experimental or
applied quantitative genetics than asymptotic results which may be more relevant
to evolutionary problems.

This relationship is also dependent on the effective number of C!TLs. It is
illustrated in figure 3, in which theoretical predictions are compared to the results of
simulations. Firstly, it turns out that Gaussian predictions of genetic variances are
satisfactory during several generations, and more so as population size is greater
and selection intensity lower. It seems however that the theory underestimates
the amount of ’hidden’ variance in small populations, which is expressed by an
estimated value of T larger than its theoretical value. Even with very few QTLs,
approximations are good for large population sizes and medium selection intensity,
the greatest departures between analytical predictions and simulations appearing
for high selection intensities. Secondly, the prediction concerning the organization
of genetic variability, as given by equation !20!, is more robust than that of genetic
variances themselves. The agreement between theory and simulations is observed
during more generations, although an increasing variability of the estimated T
parameter is observed when significant departures between theoretical and observed
variances arise (the estimated variance of T between replicates then shows a sharp
increase).





Such a structure of genetic variability under selection implies some changes in
the partition of genetic variance among groups of related individuals. For example,
within the framework of the simple population model considered until now, the
partition of genetic variance into full-sib covariance (CFS), and within-family
variance (Vw, which is equal to half the genic variance for unlinked (aTLs), can
be written as follows, in the population of new unselected zygotes:

CONCLUSION

In this paper, the genetic model is restricted to a set of unlinked loci. Although it
may be stated that any trait is due to many loci spread along the chromosomes,
considering a finite set of unlinked loci may not be completely unrealistic. The
first experimental results on the localization of GZTLs in tomato suggest that a few
main regions are involved, and that these regions may in fact include several closely
linked genes. The system made up of unlinked loci with many alleles (modelled by
a Gaussian distribution of effects) may thus be a correct first-order approximation
of a genetic system involving several clusters of genes on different chromosomes,
provided no long-term prediction is required. Indeed, simulation runs involving
either several unlinked loci with many alleles taken from a normal distribution,
or several clusters of tightly linked loci with only 2 alleles, lead to very similar
responses to directional selection (not shown). However, this is no longer true in
later generations, when many recombination events within clusters generate ’new’
alleles, and lead to responses that are unpredictable in the framework of the present
theory (Hospital, 1992; Hospital and Chevalet, 1993).

Investigating the effects of the distribution of quantitative loci on the response to
selection could be performed here owing to the use of the Gaussian approximation.
It is well known that Gaussian distributions are not robust under Mendelian
segregation (Felsenstein, 1977), and that, even if a Gaussian distribution is a
correct approximation at some time, selection promotes asymmetrical distributions
needing higher moments to be included in the recurrence relationships (Turelli and
Barton, 1990). When looking at the simulation results, we can see that equation
[20] remains correct, but that the reduction of the genic variance Va under selection
is underestimated. This suggests that the Gaussian expression of regressions of
genotypes at individual loci on phenotypes is the main incorrect step of the
approximation. In fact it is clear that (in a true genetic model) selection shifts
allele frequencies and develops asymmetrical distributions which cannot be handled
in the framework of Gaussian distributions. Developments of distributions in Gram-
Charlier series could be investigated, but such developments would not allow the
joint distributions at several loci to be made explicit.

The interesting result obtained here is that several qualitative features of the
genetic system are correctly taken into account by the Gaussian approximation.
Mainly, the analysis introduces a new macroscopic parameter (the effective number



of quantitative loci) to characterize a quantitative trait, in addition to the usual
heritability coefficient. This parameter controls the amount of mid-term selection
response and the structure of genetic variance in the population. The other
important feature predicted by the model and checked by simulations results is the
relationship between the amount of genetic variance available to selection (VA) and
the amount of ’hidden’ genetic variance (equation !20!). This result generalizes those
obtained by Bulmer (1971) and Verrier et al (1990) for the infinitesimal model, and
yields new expressions of covariances between relatives. Whether these discrepancies
are important for the methods of estimation of breeding values remains to be
investigated.

Other uses of the model may be considered, such as the search for optimal
selection intensities in a selection program, or the management of matings in
finite populations submitted to strong selection. Indeed, the Gaussian framework
would make it easy to take account of population structures (separate sexes,
overlapping generations, family or index selection) and of assortative mating.
However, the poor long-term predictive power of the method must be stressed.
Indeed, the equilibrium genetic structures arising from a balance between mutation
and selection depend strongly on the chosen model (Gaussian model vs the rare
allele or ’house of cards’ model, Barton and Turelli, 1987), indicating that the
Gaussian approximation should not be used if asymptotic results are searched
for. Nevertheless the ’Gaussian’ modelling of the optimization of short or mid-
term selection schemes may be worthwhile, and provide an improvement over usual
theories (Robertson, 1970).
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APPENDIX

Proof of equation [20J

The proof consists of deriving from equations [25] and [26] that T reaches the neighborhood
of its limit T (equation [27]), within a few generations. The proof is given here in the case
of a constant phenotypic variance Vp, but could be extended to the case of a constant
environmental variance.

Firstly, equation [26] is rewritten with the new variable

Then it is shown that the series I Ut is bounded by a positive series Zt converging rapidly
to a small value.

The following notation is introduced for the current value of heritability

Let Dt be the denominator in equation (26!, which can be written as

where

and

Equation [26] becomes



The expression in the second line [45] can be uniformly bounded by a small number:

In the first line (44!, the sum St of the first 2 terms

can be shown to have an absolute value less than 1/2. The proof depends on the sign of
(3, and this distinction is also used to get a minoration of Dt.

If ,0 is negative, ie if 
- - -

then

Introducing these inequalities in A, we can write the following inequalities

and taking advantage of

and the hypothesis on the sign of ,3, we derive 
v

Similarly, we note that, in this case:

In the other case, /3 > 0, then

and the preceding inequality [47] still holds. We have

from which we get



Thus, the inequality

is obtained in both cases, provided that the selection coefficient is smaller than (1- 1 ) I
which is expected in any case. 

!N

From equation !47), we can also derive the following lower boundary for the denomina-
tor Dt 

- -

and following the upper boundary obtained for the numerator, we have

We can define the function p such that equation [49] is written as

The function (Z &mdash;! cp(Z)) is positive and monotone increasing for (0 < Z < 1); its value
for 0 is about a/2. There are 2 roots of the equation (Z = !o(Z)) in !0,1!; one is about a,
and the other can be shown to be larger than 1/2, provided that K is not too large (for
large N and Le, the condition is: cp(1/2) < 1/2 if K < 24 - 4). Moreover, the derivative
of cp at the smallest root is about 1/2, so that any series (Zt) with an initial value such
that 0 < Zo < 1/2 converges rapidly to this root.

Then it follows from equation [49] that, if for some time v the inequality IUvl < 1/2
holds, the series (I[Tv+tl) is smaller by the series ( Zt ) defined by

and that the series T!t! reaches the neighborhood of T within 4-5 generations.
That [1/t] enters the region defined by !U! < 1/2 can be checked numerically, by

considering any initial conditions (V !!! , T !!! ) in equations [25] and (26! , and by twice
iterating these equations; in all cases, it is found that 1/2 < T!2! < 3/2 (for large N and
Le, T121 can be written as the ratio of 2 polynomials in x = (T(O) - 1)/2 and y = rh 0 ’ 2
and the property can be exactly proven as soon as -1/2 < x < 1/2 and 0 < y < 1).


